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Johnsrud, T. F. (MS, Aerospace Engineering)

Investigation of Vertical Mass Transport and Composition of the Mixed Gas in the Thermosphere

Thesis directed by Prof. Jeffrey Thayer

To better deal with the difficult problem of satellite drag and orbit prediction, this thesis

derives and presents an improved way of looking at vertical mass transport and composition in

the thermosphere, as well illustrates why helium behaves inversely to the major neutral species in

the thermosphere. Scale height analysis shows that helium concentrations at 400km can be related

to large scale height perturbations from diffusive equilibrium. A study of molecular, thermal,

and eddy diffusion show that the magnitude of the effect of each process varies according to the

scale height perturbation from diffusive equilibrium, and that molecular diffusion dominates in the

thermosphere, especially at high altitudes. Comparison against the atmospheric model TIEGCM

show agreement with the derivation’s implications for vertical winds and the inverse behavior of

helium, while comparison with the MSIS model shows that an averaged empirical model does not

have the fidelity necessary to resolve individual transport processes.
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Chapter 1

Introduction

1.1 Background Motivation: Satellite Drag

The underlying motivation behind this research is the problem of satellite drag and orbit

prediction. The main challenges when predicting satellite drag are knowing the atmospheric density

as well as the coefficient of drag for the satellite. The total density has a direct bearing on the drag

force, but the atmospheric composition will also change the coefficient of drag. Due to helium’s

high thermal velocity, the molecules are able to impinge on sides of the spacecraft not necessarily

aligned with the ram velocity. This increases the drag coefficient for the spacecraft and illustrates

why atmospheric composition also plays a role in the satellite drag problem.

The most populated satellite and space debris orbital region is in the Low Earth Orbit or LEO

region which spans an altitude range of between 200-2000km. The thermosphere is a region of the

atmosphere which extends above the altitude of minimum temperature called the mesopause which

occurs in the 80-90km range [Prölss, 2004]. Figure 1.1 shows the temperature profile that defines

the thermosphere. With an increased understanding of how the dynamics in the thermosphere

evolve, better atmospheric composition and total density estimates can be made, increasing the

fidelity of orbit prediction and drag modeling.

1.2 Previous Research and Purpose

Prieto et al. [2014] mentions it is common to calculate satellite acceleration due to drag as

adrag = 1
2ρV

2CD
S
M where ρ is the mass density of the atmosphere, V is the relative velocity of the
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Figure 1.1: Temperature profile in the thermosphere from MSIS.

satellite and atmosphere, CD is the coefficient of drag, S is the surface area of interaction, and m

the mass of the satellite. While s and m can be known fairly accurately if the orientation of the

satellite is known, uncertainties in the other three variables can significantly alter the acceleration

estimate. Coefficient of drag is often assumed to be a value between 1.5 and 3 [Eberhard Gill,

2011, Pg. 95], and relative velocity is difficult to exactly predict due to the presence of atmospheric

winds. As mentioned previously, the CD estimate improves when knowledge of what gas-surface

interactions are taking place, which is why predicting the atmospheric composition, especially the

presence of helium, is important.

The idea of studying atmospheric composition and density is not a new concept. Ever since

scientific satellites were first launched, atmospheric readings and data was collected. As far back

as 1961 helium was experimentally confirmed to be present in the atmosphere using spectroscopic

techniques, and it was also determined to be necessary to fit atmospheric drag data to the satellite

Echo 1 [Kockarts, 1973]. Due to the difficulty of obtaining insitu measurements however, little data

exists from direct readings. As satellites pass through parts of the thermosphere, they can take

readings, however these are isolated to local areas and times, which makes it challenging to build

accurate atmospheric models around. Many researchers have taken to explaining various features

present in the thermosphere and ionosphere with data gathered indirectly then, with lidar mea-

surements, satellite drag data, and the limited amount of insitu measurements. Phenomena such
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as the winter helium bulge, equatorial thermospheric anomaly, neutral thermospheric composition,

and mixing methods for the thermosphere have all been studied extensively.

The purpose of this research is to provide a robust mathematical model for the the mixing and

transport of neutral gasses in the thermosphere and compare it to what is observed in the MSIS and

TIEGCM thermospheric models. Additionally, while helium is often overlooked in the consideration

of constituent gasses due to it’s small presence in the atmospheric composition, this thesis aims

to show that it plays a dynamic role. From studying helium and its response in relation to other

neutral species, a greater understanding of the underlying dynamics for the entire thermosphere

can be reached.
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Chapter 2

Model Background

This research used two thermospheric models to evaluate the predictions and observations

made by the mathematical model presented in Chapter 3, the Naval Research Laboratory Mass

Spectrometer and Incoherent Scatter radar model, or MSIS, and the National Center for At-

mospheric Research - Thermosphere Ionosphere Electrodynamics General Circulation Model, or

TIEGCM.

2.1 MSIS

MSIS is an empirical model of the atmosphere which draws on data collected over decades

from many projects. It was initially developed in 1977 as an upper thermospheric model, but since

then several updates were made as more data was obtained. In 1983 rocket data expanded the

model to the lower thermosphere, and in 1990 it was extended all the way to ground. The current

version, and the one used for this research is NRLMSISE-00, which was released in 2000 with

updates made from more satellite drag data and other modifications [Picone et al., 2002].

Input parameters to MSIS include the date and time; geodetic altitude, longitude, and lati-

tude; and also parameters that help estimate the state of the atmosphere such as ap, a geomagnetic

index, and F10.7, a measure of solar activity. F10.7 is used as an indicator of how much solar

energy is being absorbed by the ionosphere. It cycles with the eleven year solar cycle, which has

a significant impact on the range and expansion of the thermosphere. For plots made in this pa-

per, an F10.7 value of 188 was used in order to match the results with the TIEGCM model as
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best as possible which was run at an F10.7 value of 180. This corresponds with a solar maximum

coincidentally.

2.2 TIEGCM

In contrast to the empirical approach used by MSIS, TIEGCM solves for atmospheric vari-

ables using a physics based approach. Although being one of the most common and robust physics

based model of the thermosphere currently available, it is not the first or only one to have existed.

The University College at London - Thermospheric General Circulation Model and the NCAR -

Thermospheric General Circulation Model were both developed in the early 80s, and regional iono-

spheric models were developed to describe specific sections of the ionosphere [Wang, 1998]. In 1988

the coupled thermospheric/ionospheric NCAR-TIEGCM model was first created, and since this

time has been updated and modified to reflect further understandings of the upper atmospheric

environment.

For the purpose of this paper, TIEGCM numerically solves the momentum, continuity, and

energy equations over a mesh encompassing the globe. The grid used for this research is a 2.5◦

latitude and longitude grid, with 57 pressure levels in the vertical direction. TIEGCM solves along

pressure isosurfaces in order to simplify the equations and reduce errors associated with interpolat-

ing a fixed altitude grid onto the fluctuating atmosphere. Pressure coordinates present themselves

as a natural coordinate system for the solver due to the pressure term in the momentum equation.

The dataset used in this research comes from Hsu [2016] and the model runs she performed. It is

a run of the model until it reaches a diurnally reproducible state, such that any transient effects

became periodic to match with the day-night cycle of the model. The simulation was run with

a high solar activity, F10.7 = 180, low geomagnetic activity, under equinox conditions, and the

ion-drag term was included. Table 2.1 shows the file used and description from Hsu.
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Table 2.1: TIEGCM run and description for data used in this thesis.

Filename HSUVW.tiegcm2.0_dres.pdrag_f107_180_001.nc

TIEGCM Version 2.0

Resolution 2.5 x 2.5

Description
Full simulation at solar max (with field-aligned ion drag

and with frictional heating)
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Chapter 3

Mathematical Derivation

In order to predict the gas dynamics inside the thermosphere, a governing equation describing

the transport of constituent species in the vertical (z) direction was derived from first principles.

This derivation is based on work from presented in [Liu, 2013]. Going through the derivation shows

the fundamental principles behind the governing equation, and it gives insight into the physical

meaning of the final form. First, Table 3.1 defines terms and nomenclature used.

Table 3.1: Definition of terms used in the mathematical derivation of the species transport equation.

Term Meaning Units

~U Mass averaged velocity
[
m
s

]
~Ui Individual species mean velocity

[
m
s

]
~Ci =

(
~Ui − ~U

)
Individual species diffusion velocity

[
m
s

]
νit Momentum weighted collision frequency of species i→ t

[
1
s

]
Di = kT∑

t6=imiνit
Molecular diffusion coefficient

[
m2

s

]
ρ Total mass density

[ kg
m3

]
ρi Individual species mass density

[ kg
m3

]
H = −x 1

∂x
∂z

Scale height of variable x, decreasing with height [m]
ρi
ρ Mass mixing ratio N/A

mi Molecular weight of species ’i’ kg
molecule
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3.1 Transport Equation

The following derivation stems from three equations, the mass continuity equation for an in-

dividual species, mass continuity for the whole gas mixture, and the gas species vertical momentum

equation. These are outlined in equations 3.1, 3.2, and 3.3 respectively.

∂ρi
∂t

+ ~∇ ·
(
ρi ~Ui

)
= Si − Li (3.1)

∂ρ

∂t
+ ~∇ ·

(
ρ~U
)

= 0 (3.2)

∂Pi
∂z

+ ρig = −ρi
∑
t6=i

νit
(
~Ci − ~Ct

)
(3.3)

Because the Navier-Stokes equation is being used here, it is useful to define the altitude range

for which the derivation can be considered valid. The NS equation requires an assumption of a

continuous fluid. This is characterized by Knudsen number Kn = λ
L where λ is the mean free

path of the gas, and L is a characteristic length. Figure 3.1 shows the Knudsen number for the

atmosphere from MSIS. As Kn < 1 is generally used for the continuum assumption, the following

derivation is valid up to 400-600km depending on the atmospheric conditions because the length

scale used is a scale height which is on the order of tens of kilometers.

Moving to the derivation, Equation 3.1 says that for an individual gas species, the time rate of

change of the mass density plus the divergence of the mass density flux is balanced by the net of the

source and loss terms on the right hand side. By subtracting ~∇·
(
ρi~U

)
= ~∇

(ρi
ρ

)
·
(
ρ~U
)
+ ρi

ρ

(
~∇·(ρ~U)

)
from both sides of 3.1 and combining the divergence operations on the left hand side, the following

representation of the individual mass continuity equation can be found:

∂ρi
∂t

+ ~∇ ·
[
ρi
(
~Ui − ~U

)]
= Si − Li − ρ~U · ~∇

(
ρi
ρ

)
− ρi
ρ
~∇ ·
(
ρ~U
)

(3.4)

From this form, the Equation 3.2 can be applied along with bringing in the definition of species

diffusion velocity ~Ci to describe the time rate of change of the mass mixing ratio in Equation 3.5.

ρ
∂

∂t

(
ρi
ρ

)
= −~∇ · [ρi ~Ci] + Si − Li − ρ~U · ~∇

(
ρi
ρ

)
(3.5)
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Figure 3.1: MSIS derived Knudsen numbers.

Using the reverse chain rule to pull ρ into the time derivative conveniently expresses the equation

in terms of the mass mixing ratio, ρi
ρ . This can then be arranged to form the material derivative

of the mass mixing ratio by bringing the convective gradient to the left hand side. The governing

equation for a gas species in the thermosphere is then shown to be Equation 3.6.

ρ
D

Dt

(
ρi
ρ

)
= −~∇ · [ρi ~Ci] + Si − Li (3.6)

In the thermosphere, the source and loss terms are negligible for the neutral gasses, thus the

material derivative is solely dependent on the gradient of the diffusive mass flux ~∇ · [ρi ~Ci], which

has several components and is derived below.

3.2 Diffusion

The most basic definition for the diffusive mass flux of one gas through a mixture is the density

times the diffusion velocity of the gas, or Γi = ρi ~Ci. The first form of diffusion considered here is

molecular diffusion, present when there is a concentration gradient for a constituent gas species.

From Equation 3.3, if only the vertical direction is considered, then Czi = 1
ρi

∑
t 6=i νit

(
− ∂Pi

∂z − ρig +

ρi
∑

t6=i νitC
z
t

)
. Taking the expression for the molecular diffusion coefficient and substituting it into
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the expression for Czi simplifies to Czi = Di
ρi

(
− mi

kT
∂Pi
∂z −

mi
kT ρig + mi

kT ρi
∑

t6=i νitC
z
t

)
. The diffusive

flux equation can then be expanded with the ideal gas law to Equation 3.7. Note that the gradient

∂mi
∂z is equal to zero due to the molecular mass of a molecule being constant. Equation 3.7 differs

from what is presented in Liu [2013] by a sign change on the summation term, and Appendix A.1

goes through the derivation and shows where the difference arises.

ΓMi = ρiC
z
i = −Di

(∂ρi
∂z

+
ρi
T

∂T

∂z
+
ρimig

kT
− ρimi

kT

∑
t6=i

νitC
z
t

)
(3.7)

A second form of diffusion, thermal diffusion, becomes significant for lighter species in the gas

mixture such as helium and hydrogen. This is due to the fact that unlike gasses will diffuse under

a temperature gradient [Richmond, 1983] and is discussed in the next chapter. This effect, given

by ΓTi = −ρiDT i
1
T
∂T
∂z , can be added to the expression for molecular diffusion shown in Equation

3.7 to capture the effects of both processes. This is shown in Equation 3.8, where αi is now the

ratio of diffusion coefficients, DTi
Di

.

Γi = −Di

(∂ρi
∂z

+
ρi
T

∂T

∂z
+
ρimig

kT
− ρimi

kT

∑
t6=i

νitC
z
t

)
− ρiDT i

1

T

∂T

∂z
or equivalently

Γi = −ρiDi

( 1

ρi

∂ρi
∂z

+
(1 + αi)

T

∂T

∂z
− mig

kT
+
mi

kT

∑
t6=i

νitC
z
t

) (3.8)

The third and final form of diffusion being considered in this region of the atmosphere is

eddy diffusion. This is the effect of turbulence in the atmosphere to mix the gas species, and is

generally negligible in the thermosphere. This process, which drives the mixture towards uniformity

and homogenization, rapidly falls off above 100km in the region denoted as the turbopause due

to the increasing effect of viscosity damping turbulent motions. The eddy diffusive mass flux is

adapted from the molecular eddy diffusive flux equation in φεi = −Kn d
dz

(
ni
n

)
where K is the eddy

diffusion coefficient [Prölss, 2004]. Changing from number density to mass density and distributing

the derivative leads to Equation 3.9 for the mass flux due to eddy diffusion.

ΓEi = −Kρ d
dz

(ρi
ρ

)
= −ρiK

(
− 1

ρ

∂ρ

∂z
+

1

ρi

∂ρi
∂z

)
(3.9)

Combining the effects of molecular diffusion due to density gradients, thermal diffusion re-

sulting from temperature gradients, and eddy diffusion from turbulent mixing results in the final
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expression for the species diffusive mass flux in the thermosphere shown in Equation 3.10.

Γi = −ρiDi

( 1

ρi

∂ρi
∂z

+
1

T

∂T

∂z
+
mig

kT
− mi

kT

∑
t6=i

νitC
z
t

)
− ρiDTi

1

T

∂T

∂z
− ρiK

( 1

ρi

∂ρi
∂z
− 1

ρ

∂ρ

∂z

)
(3.10)

3.3 Using Scale Heights

A useful tool in simplifying and analyzing these equations is the use of scale heights. Table 3.1

shows the general definition of a scale height for a parameter that decreases in value with altitude

and it is immediately apparent that terms of this form appear frequently in Equation 3.10. Defining

all of these terms in relation to their scale height results in the definitions given in Equation 3.11.

1

H∗ρi
= − 1

ρi

∂ρi
∂z

,
1

Hρ
= −1

ρ

∂ρ

∂z
,

1

Hm
= − 1

m

∂m

∂z

1

HT
=

1

T

∂T

∂z
,

1

HP
= − 1

P

∂P

∂z
,

1

HPi
= − 1

Pi

∂Pi
∂z

(3.11)

A second, more useful expression for 1
HPi

and 1
HP

can be derived when combined with the ideal gas

law and the assumption of diffusive or hydrostatic equilibrium respectively. Looking at Equation

3.3, in order to satisfy momentum conservation it can be seen that if the atmosphere is in diffusive

equilibrium, the
(
~Ci − ~Ct

)
term becomes zero because the diffusive velocities are both zero. This

means ∂Pi
∂z +ρig = 0 which is an individual species analogue to the hydrostatic equilibrium equation

∂P
∂z + ρg = 0. Taken together with the ideal gas law, these equations result in the simplifications

shown in Equation 3.12 for pressure scale heights under diffusive or hydrostatic equilibrium.

1

HPi
= − 1

Pi

∂Pi
∂z

=
mig

kT
and

1

HP
= − 1

P

∂P

∂z
=
mg

kT
(3.12)

Similarly, using the ideal gas law, ρ = Pm
RT where m is the mean molecular mass of the gas and R is

the universal gas constant, the inverse scale height expression for ρ and ρi can be rewritten under

the assumption of hydrostatic or diffusive equilibrium. Applying the product rule and quotient rule

for the z derivative can be shown to be 1
ρ
∂ρ
∂z = − 1

T
∂T
∂z + 1

m
∂m
∂z + 1

P
∂P
∂z . This results in Equation 3.13

relating the scale heights of the atmospheric parameters.

1

Hρ
=

1

HP
+

1

HT
+

1

Hm
=
mg

kT
+

1

HT
+

1

Hm
(3.13)
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Because the total atmospheric gas is considered to be in hydrostatic equilibrium, this definition

holds. A similar process produces the Equation 3.14 for the relationship between scale heights

for an individual gas species under diffusive equilibrium. Since for an individual species the mean

molecular mass is constant, the third term of Equation 3.13 is dropped.

1

Hρi

=
mig

kT
+

1

HT
(3.14)

The difference between Hρi and H∗ρi is that Hρi is the mass density scale height for a gas species

in diffusive equilibrium and H∗ρi is the actual mass density scale height of the gas species in the

thermosphere.

Applying the scale height definitions to Equation 3.10 results in a form that is easier to

understand shown in Equation 3.15.

Γi = ρiC
z
i = −ρiDi

( 1

Hρi
− 1

H∗ρi
− mi

kT

∑
t6=i

νitC
z
t

)
− ρiDT i

1

HT
− ρiK

( 1

Hρ
− 1

H∗ρi

)
(3.15)

Considering the transport of species i, the molecular diffusion term is modified by the perturbation

of the species mass density scale height from diffusive equilibrium as well as the pressure term

created by the diffusive velocities of other species. If the species is in diffusive equilibrium the scale

height terms will cancel. Thermal diffusion is always present under a temperature gradient, and

eddy diffusion is modified by the perturbation of the species scale height from the total atmospheric

scale height. This characteristic of eddy diffusion describes how it drives the mixture to be homo-

geneous, with the species concentration scale heights matching the total. This also has a reverse

effect depending on the species. For a species such as N2, which generally has a scale height lower

than that of the average, the effect of eddy diffusion is opposite that of helium, which has a scale

height larger than that of the total atmosphere.

3.4 Expanded Transport Equation

Recall that ρ DDt

(
ρi
ρ

)
= −~∇ · [ρi ~Ci] is the mass transport equation derived earlier with the

negligible source and loss terms dropped. Restricting the derivatives to the z-component only
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results in Equation 3.16.

ρ
D

Dt

(
ρi
ρ

)
= − ∂

∂z

(
ρiC

z
i

)
(3.16)

Expanding this with the result from 3.15 gives 3.17.

ρ
D

Dt

(
ρi
ρ

)
=

∂

∂z

[
ρiDi

( 1

Hρi
− 1

H∗ρi
− mi

kT

∑
t6=i

νitC
z
t

)
+ ρiDT i

1

HT
+ ρiK

( 1

Hρ
− 1

H∗ρi

)]
(3.17)

Switching from the Lagrangian description to the Eulerian is helpful in some cases. This can

be done by moving the convective derivative to the right hand side. Realizing that the convective

derivative can also be expressed in terms of scale heights because ρw ∂
∂z

(ρi
ρ

)
= ρiw

(
− 1
ρ
∂ρ
∂z + 1

ρi
∂ρi
∂z

)
=

ρiw
(

1
Hρ
− 1
H∗ρi

)
, where w is the z-component of velocity in the thermosphere called the vertical winds

produces Equation 3.18.

ρ
∂

∂t

(
ρi
ρ

)
=

∂

∂z

[
ρiDi

( 1

Hρi
− 1

H∗ρi
− mi

kT

∑
t6=i

νitC
z
t

)
+ρiDT i

1

HT
+ρiK

( 1

Hρ
− 1

H∗ρi

)]
−ρiw

( 1

Hρ
− 1

H∗ρi

)
(3.18)

This is the form that the rest of this paper will refer to. The roles and magnitudes of the terms

will be examined in the coming chapters to determine the dominant processes governing the species

transport. As a final note, the effects of vertical winds has a similar property to eddy diffusion in

that it works in opposite ways for different species. This means, for example, that helium and N2

mass mixing ratios have opposite responses to the presence of vertical winds.

Because the mass mixing ratio is prevalent in Equation 3.18 and its derivation, Figure 3.2

shows the plotted mass mixing ratio of several neutral species with altitude. At the lower altitudes,

N2 dominates, and is then surpassed by O1. The mass mixing ratio for helium does not rise

significantly until above 400km. For this reason, helium fluctuations in the lower thermosphere

have little effect on the total mass continuity of the gas mixture.
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Figure 3.2: The mass mixing ratios of various neutral species in the thermosphere. TIEGCM run,

UT = 0.03hr LT = 6.7hr latitude = 63.75.
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Chapter 4

Scale Height Analysis

4.1 Comparison With Diffusive Equilibrium

Densities can be derived from the scale heights using Equation 4.1 where ρ0 is the density

known at some initial lower altitude, z0.

ρ(z) = ρ0 exp
( ∫ z

z0

− z

Hρ(z)
dz
)

(4.1)

The result is that ρ(z) is an integrated quantity and a change in the scale height, even a slight

difference, can have large effects once integrated over large altitude ranges. As shown in Chapter

3, the density scale heights of each species and the total gas are driving factors determining the

transport of constituent gasses in the thermosphere. Equation 3.18 shows that for the diffusive

and convective terms, the relationship between the actual species scale height and the diffusive

equilibrium scale heights plays an important role. The scale height difference that causes diffusion

also significantly alters the concentrations of a gas species at altitude. This can be seen at points

over the globe, as illustrated in Figure 4.1 which shows the helium and nitrogen mass concentrations

at 400km from the TIEGCM run with the magnetic equator overlayed in red. The profiles show a

distinct inverse relationship. A closer look at the helium plot also shows features that follow the

magnetic equator. On the northern and southern sides, there is an area of higher concentration

separated by a trough where the equator lies. This can be attributed to the atmospheric circulation

patterns induced from field aligned ion drag in the Equatorial Thermospheric Anomaly [Hsu et al.,

2014]. Ions in the thermosphere interact with the magnetic field, transferring momentum and
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(a) (b)

Figure 4.1: Helium and Nitrogen mass density profiles at 400km. TIEGCM run, UT = 0.03

causing upward vertical winds at the magnetic equator and downward vertical winds on either

side. Helium’s large scale height difference from the atmospheric total drives it to respond to these

vertical winds.

To examine the distinct helium and nitrogen enhancement regions, the scale heights of species

are plotted in 4.2, 4.3, and 4.4 which correspond to latitudes of 63.75◦, 58.75◦, or 11.25◦ and solar

local times of 6.7hr, 2.7hr, or 14hr respectively. Figure 4.2 is the location of the Northern helium

enhancement and there is clearly an anomaly of the scale height. While oxygen and nitrogen follow

their respective diffusive profiles closely, helium has a low altitude spike which indicates a persistence

in mass density where the diffusive equilibrium profile would drop off. This low altitude feature in

the scale height is enough to clearly create the high concentration seen at 400km. This reinforces

the idea behind helium being loosely decoupled from the continuity equation, especially at lower

altitudes where the more prevalent and heavier species make up the majority of the atmosphere.

The heaviest, most prevalent species satisfy the mass transport, while large changes of helium

concentrations have a small effect on the total gas. A second point of note is that N2 and O2 are

species with a scale height less than that of the total atmosphere. From the 1
Hρ
− 1

H∗ρi
component in

the eddy diffusion and vertical wind terms of Equation 3.18, this shows that the eddy diffusive and

vertical winds response of nitrogen and molecular oxygen is the opposite that of atomic oxygen and
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helium. Also, since helium scale height deviates so greatly from the total atmosphere, the vertical

wind term has a significant effect on its mixing ratio in the thermosphere. Figure 4.3 is a location

chosen where the 400km helium density is between that of the highest and lowest in Figure 4.1a.

Again, while oxygen and nitrogen follow diffusive equilibrium profiles, helium clearly diverges. This

persistent pattern suggests that helium is rarely in diffusive equilibrium which can be caused by it’s

sensitivity to vertical winds, perturbations at low altitudes, or other external factors. Figure 4.4

shows the scale heights at a point where nitrogen is heavily concentrated in Figure 4.1b. Helium

is much closer to its diffusive profile, and the spike seen earlier is completely gone. While the scale

heights of nitrogen and oxygen do not diverge much, helium clearly is a dynamic species in the

thermosphere.

(a) (b)

Figure 4.2: Species mass density scale heights with equilibrium scale height and total atmospheric

scale height for reference. TIEGCM run, UT = 0.03hr LT = 6.7hr latitude = 63.75.
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(a) (b)

Figure 4.3: Species mass density scale heights with equilibrium scale height and total atmospheric

scale height for reference. TIEGCM run, UT = 0.03hr LT = 2.7hr latitude = 58.75.

(a) (b)

Figure 4.4: Species mass density scale heights with equilibrium scale height and total atmospheric

scale height for reference. TIEGCM run, UT = 0.03hr LT = 14hr latitude = 11.25.
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4.2 Thermal Diffusion

The high thermal velocity of helium relative to the heavier species like O2 and N2 means that

it is the only species to be significantly affected by thermal diffusion. A temperature gradient in

the atmosphere also produces thermal velocity gradient for the molecules. This velocity gradient

is largest for helium due to its small molecular weight, and it drives the gas to diffuse through the

other gasses. Therefore, of the neutral species in the thermosphere, the effects of thermal diffusion

are only significant for helium [Richmond, 1983]. Recall that α is defined as the ratio of the thermal

diffusion coefficient to the molecular diffusion coefficient. Typical values for helium’s α lie around

-.38, this being the value used by Sutton et al. [Sutton et al., 2015]. Richmond states that the 1976

U.S. Standard Atmosphere uses a value of -.40. For the work done here, a value of -.38 is used for

consistency with previous work.

Figure 4.5 shows how accounting for thermal diffusion changes the equilibrium profile of

helium in the thermosphere. At lower altitudes, the contribution of thermal diffusion is significant,

Figure 4.5: Differences in equilibrium scale height profiles for Helium when accounting for thermal
diffusion. TIEGCM run, UT = 0.03hr LT = 6.7hr latitude = 63.75.

such that it changes the diffusive equilibrium scale height profile noticeably. After 350km however,

the temperature gradient that sustains diffusion rapidly drops off and the two lines fall on top of

each other.
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Although the difference appears small, inputting the scale heights to the exp
( ∫ z

z0
− z
Hρ(z)

dz
)

portion of Equation 4.1 produces significantly different values however. Table 4.1 shows the com-

pared values of exp
( ∫ ∼400km

z0
− z
Hρ(z)

dz
)

when accounting for thermal diffusion versus without.

Table 4.1: Integrated effect of thermal diffusion on helium mass density at 400km.

Location With Thermal Diffusion Without Thermal Diffusion

Northern helium enhancement 0.052 0.027

Nitrogen enhancement 0.061 0.029

This means given the same ρ0, the diffusive profile of helium without accounting for thermal

diffusion produces roughly half the mass density as the profile that accounts for thermal diffusion.

4.3 MSIS Compared to TIEGCM

The results of the previous section show an interesting anti-correlation between nitrogen and

helium. The physics based TIEGCM run predicts this, but the empirically assembled MSIS model

also shows similar results. Figure 4.6 shows helium mass density at 400km in the same way Figure

4.1a does.
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Figure 4.6: MSIS Helium mass density at 400km

Clear differences are apparent due to the smoothing and averaging done in the MSIS model,

but the large scale features are consistent. Comparing the scale height results is less similar however.

Figure 4.7 shows MSIS does not have the resolution or differentiation required to examine the scale

heights in the way that TIEGCM does. The profiles of each species follow their equilibrium profiles

nearly identically.
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(a) (b)

(c)

Figure 4.7: Species mass density scale heights with equilibrium scale height and total atmospheric
scale height for reference.
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Chapter 5

Mixing Magnitudes

In order to examine and compare the roles of turbulent and molecular diffusion processes

as well as vertical wind transport, the magnitudes of the coefficients can be examined. Recall

that the molecular diffusion coefficient Di depends on the collision frequency of species i with the

rest of the gas mixture, as well as the molecular weight of species i. The collision frequency of

species i with species t can be calculated from the Equations in 5.1 [Schunk and Nagy, 2000]. This

characterizes the momentum transfer weighted interactions of two species, and it can be shown

that νitnimi = νtintmt.

νit =
16

3

ntmt

mi +mt
Ωit

Ωit =
α√
4π
Qit

α2 =
2kTit
µit

µit =
mimt

mi +mt

Tit =
miTt +mtTi
mi +mt

Qit = πσ2

(5.1)

Where T is the temperature of the interacting species, k is Boltzmann’s constant, and σ is the

sum of the species collision radii. Combined with Equation 5.2, the diffusion coefficient for a given

species can be calculated.

Di =
kT

mi
∑

i 6=t νit
(5.2)
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The eddy diffusion coefficient, K, is often given an estimated value due to the difficulty in

characterizing the exact processes that contribute to it. TIEGCM uses a value for K computed

from Equation 5.3 where Z is the pressure level coordinate TIEGCM uses which ranges from [-7,7]

[Wang, 1998].

K(z) = 5.0× 10−6e−7−ZH2
P (5.3)

Figure 5.1 shows the values for the molecular diffusion and eddy diffusion coefficients, and it agrees

fairly well with Figure 5.2 from the 1976 US Standard Atmosphere.

Figure 5.1: Molecular and eddy diffusion coefficients.
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Figure 5.2: Molecular and eddy diffusion coefficients from [Richmond, 1983].

Clearly, eddy diffusion becomes relatively negligible compared to the effects of molecular dif-

fusion above roughly 100km. Above this, viscosity drives eddy diffusion effects down, and molecular

diffusion increases due to the lower collision frequencies experienced by the gasses.

5.1 Time Constants

Another common way to examine the importance of the processes is to compare the time

constants for the rates at which the processes occur. This involves considering one process at a time,

and deriving a characteristic time scale for the process to evolve. The diffusion time constant can

be derived from the continuity equation for an individual species shown by Equation 3.1. Taking

the vertical component and rearranging the terms yields:

∂ρi
∂t

+ Czi
∂ρi
∂z

= −∂C
z
i

∂z
ρi

Assuming U z = 0 means that Czi = U zi and using the definition of the material derivative, the

above can be simplified to the ODE in Equation 5.4,

dρi
dt

= −k(z)ρi (5.4)

where k =
∂Czi
∂z is substituted in for readability. Now, the time constant for the process can be

found in a similar way to finding scale height. Taking the time constant to be the time a value
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changes by a factor of 1
e , then:

τi = ρi
1
dρi
dt

which leads to the equation of the time constant in Equation 5.5.

τ = − 1
∂Czi
∂z

=
( ∂
∂z

[
Di

( 1

Hρi
− 1

H∗ρi
− mi

kT

∑
t6=i

νitC
z
t

)
+DT i

1

HT
+K

( 1

Hρ
− 1

H∗ρi

)])−1
(5.5)

Now, to evaluate the time constant associated with any one process, the other two are dropped and

only the selected process is considered. Additionally, it is common to assume that the diffusion

coefficient is independent of z to a first approximation and can then be brought outside of the

derivative [Prölss, 2004].

Examining the time constant for molecular diffusion requires evaluating Equation 5.6.

τmoleculari =
1

Di
d
dz

(
1
Hρi
− 1

H∗ρi

) (5.6)

The drag term expressed by mi
kT

∑
t6=i νitC

z
t is assumed to be negligible compared to the effects of

the inverse scale height difference and can be dropped. At this point it is convenient to define the

derivatives of various scale height values. Distributing the derivative through, it is straightforward

to show the relations of 5.7. A more thorough derivation of these equations is given in section A.3

of the appendix.

∂

∂z

(
1

H∗ρi

)
=

1

H∗ρi
2 −

1

ρi

∂2ρi
∂z2

∂

∂z

(
1

HT

)
=

1

T

∂2T

∂z2
− 1

HT
2

∂

∂z

(
1

Hρi

)
= − 1

HPi

1

HT
− 1

HT
2 +

1

T

∂2T

∂z2

∂

∂z

(
1

Hρ

)
=

1

HP

(
1

Hm
− 1

HT

)
− 1

H2
m

− 1

H2
T

+
1

T

∂2T

∂z2
+

1

m

∂2m

∂z2

(5.7)

By neglecting the second order terms, Equation 5.6 becomes Equation 5.8.

τmoleculari =
1

Di

(
− mig

kT
1
HT
− 1

HT
2 − 1

H∗ρi
2

) =
1

Di

(
− 1

HT
1
Hρi
− 1

H∗ρi
2

) (5.8)

Equivalent approaches can be made for the thermal and eddy diffusion terms. The resulting

in equations are shown in 5.9 and 5.10. DT i is calculated from DTi = αDi where α is equal to -.38.
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τ thermali =
1

DT i
∂
∂z

(
1
HT

)
=

1

DTi

(
− 1

HT
2

) = −HT
2

DT i
(5.9)

τ eddyi =
1

K ∂
∂z

(
1
Hρ
− 1

H∗ρi

) =
1

K
(

1
HP

[
1
Hm
− 1

HT

]
− 1

H2
m
− 1

H2
T
− 1

H∗ρi
2

) (5.10)

Equations 5.8, 5.9, and 5.10 are plotted in Figure 5.3. This is at the Northern helium enhancement

Figure 5.3: Helium diffusion time constants for each process.

region highlighted in Figure 4.2a. The magnitudes of each time constant show that molecular

diffusion dominates in the thermosphere. τmolecular becomes orders of magnitude smaller than the

other processes, and at upper altitudes molecular diffusion takes place so rapidly that it is reasonable

to neglect the contributions of the other diffusive processes. Thermal diffusion contributes at a small

level below around 200km, however as the exospheric temperature is approached the scale height

HT increases dramatically which drives the time constant up. Eddy diffusion becomes negligible

very rapidly due to the decreasing K. At 150km the time constant is over three orders of magnitude

longer than that of molecular diffusion, indicating a very slow process. It continues to increase with

altitude, however the figure cuts this off to maintain an x-axis scale that is meaningful.

It is common to report time constants for processes in terms of H2

D where H is a scale height

for a parameter and D is the diffusion coefficient. This is a result of considering diffusion as purely a

Fick’s Second Law problem where ∂ρ
∂t = D ∂2ρ

∂z2
. This is what happens for τ thermali where the familiar
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form is recovered. When the diffusive process is taken relative to an equilibrium state however,

terms such as − 1
HT

1
Hρi
− 1

H∗ρi
2 appear. This is because a concentration gradient will remain when

the species reaches diffusive equilibrium. There is always a gradient present as the total mass

density decreases with altitude. Molecular diffusion acts on this gradient, but is balanced by the

gravitational and pressure effects. If Fick’s Second Law is assumed to be the only constraint,

then the vertical concentration gradient would be eliminated, however this does not account for a

diffusive equilibrium state.

5.2 Vertical Winds

The final term of equation 3.18 that affects the mass transport in the thermosphere is the

vertical wind term. In order to evaluate the extent to which it affects the mass mixing ratio, a

different technique can be used. The vertical winds necessary to negate the effects of molecular

diffusion can be calculated by setting the time derivative of the mass mixing ratio to zero in

Equation 3.18. If molecular diffusion and thermal diffusion are considered the dominant forms of

diffusion present, then the eddy diffusion term can be dropped. Arranging the terms results in

Equation 5.11.

ρiw
( 1

Hρ
− 1

H∗ρi

)
=

∂

∂z

[
ρiDi

( 1

Hρi
− 1

H∗ρi

)
+ ρiDT i

1

HT

]
(5.11)

Again, pulling the diffusion coefficients out and distributing the derivative produces the interme-

diate step:

ρiw
( 1

Hρ
− 1

H∗ρi

)
= Di

[
ρi
(
− mig

kT

1

HT
− 1

HT
2 −

1

H∗ρi
2

)
+
∂ρi
∂z

( 1

Hρi
− 1

H∗ρi

)]
+DT i

∂

∂z

[
ρi
HT

]
When the second order terms are dropped and w is isolated to the left hand side, Equation 5.12 is

left.

w = −
(
Di

Hρi
+
DT i

HT

)(
1

HT
+

1

H∗ρi

)(
1

Hρ
− 1

H∗ρi

)−1
(5.12)

Refer to Section A.4 of the appendix for a detailed derivation of Equation 5.12. As the diffusion

coefficients increase with altitude, vertical wind magnitude must as well. Figure 5.4a shows this

relationship for helium, again at the location shown in Figure 4.2a. At lower altitudes, vertical



www.manaraa.com

29

winds can dominate the mass mixing ratio time rate of change, as small winds of tens of meters

per second will perturb the time evolution. At higher altitudes however, increasingly large vertical

winds are needed to compete with molecular diffusion. It is not common to have vertical winds in

the hundreds of meters per second in the upper thermosphere, which the figure shows will effectively

compete with molecular diffusion when they oppose each other. This suggests that the effects of

vertical winds are limited to the lower regions of the thermosphere. Figure 5.4b shows that the

vertical winds from the simulation are very close to the values necessary to compete with molecular

diffusion up to nearly 250km. Compared with the necessary vertical winds to balance O1 diffusion

(a) (b)

Figure 5.4: Figure (a) shows the vertical winds necessary to balance molecular diffusion at location
1 (north nighttime helium feature). Figure (b) compares these wind values with the vertical wind
output from TIEGCM. TIEGCM run, UT = 0.03hr LT = 6.7hr latitude = 63.75.

seen in Figure 5.5, helium is clearly much more sensitive to vertical winds. O1 and the other

heavier species are very insensitive to vertical winds. At the other locations previously highlighted,

the vertical winds act differently, shown in Figure 5.6. At the intermediate helium concentration

location, downward winds push the helium scale height to be larger than the diffusive equilibrium

profile. On the day side, where the nitrogen concentration peaks at 400km, positive vertical winds

act to push the helium scale height to be smaller. At this location, helium closely follows its diffusive

profile.
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Figure 5.5: Necessary vertical winds to balance O1 molecular diffusion. TIEGCM run, UT = 0.03hr
LT = 6.7hr latitude = 63.75.

(a) TIEGCM run, UT = 0.03hr LT = 2.7hr lati-
tude = 58.75.

(b) TIEGCM run, UT = 0.03hr LT = 14hr lati-
tude = 11.25.

Figure 5.6: Figure (a) shows the vertical winds necessary to balance molecular diffusion at location
2 (intermediate helium location), along with the TIEGCM output. Figure (b) shows the vertical
winds necessary to balance molecular diffusion at location 3 (daytime nitrogen enhancement), along
with the TIEGCM output.
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Chapter 6

Conclusions and Future Work

The derived mixing ratio transport equation explains the counter intuitive behavior of helium

relative to the major species like N2, O2, and O1. The large scale height difference between

helium and the total gas make helium transport especially sensitive to vertical winds, and the light

molecular weight make it the only neutral species subject to thermal diffusion. The time constant

analysis shows that molecular diffusion dominates in the thermosphere, but at lower altitudes

thermal diffusion also plays a role. By simplifying the equation using scale heights, a more intuitive

understanding of the dynamics can be reached. This understanding will help improve satellite drag

estimates and orbit predictions. Also, having a better understanding of the dynamics in the lower

thermosphere enhances the ability to model what occurs above the continuum region where this

derivation is valid.

Future work should examine the validity of neglecting the mi
kT

∑
t6=i νitC

z
t term in molecular

diffusion, as it could play a role that was not considered here. It opens the possibility for a gas

species to have zero diffusive flux despite there being a difference in diffusive and actual scale

heights. This would be a result of the drag term balancing the diffusive flux towards equilibrium,

producing no net flux. Considering this term brings more of the complicated mixed gas dynamics

into the derivation, and would enhance the accuracy of the mathematical model.

Additionally, extending the scale height analysis to a three dimensional model could be useful.

Diffusion along the horizontal plane might explain further the results of TIEGCM. When uneven
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heating over the hemispheres occurs, such as in the solstices, the horizontal transport effects could

become significant as features form from converging winds.
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Nomenclature

ρi
ρ Mass mixing ratio

Γi Diffusive mass flux

λ Molecular mean free path

νit Momentum weighted collision frequency

ρ Total atmospheric gas mass density

ρi Individual gas species mass density

σ Sum of the radii of colliding molecules

~Ci =
(
~Ui − ~U

)
Diffusion velocity of gas species i

~Ui Individual species mean velocity

~U Mass averaged velocity

CD Coefficient of drag

Di = kT∑
t6=imiνit

Molecular diffusion coefficient

DT i Thermal diffusion coefficient

K Eddy diffusion coefficient

k Boltzmann’s constant
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Kn Knudsen number

L Characteristic length

mi Molecular weight of species ’i’

Pi Partial pressure of species ’i’

T Temperature



www.manaraa.com

Appendix A

Derivations

A.1 Diffusive Flux

This derivation deviates from the derivation of Liu [2013] as shown:

Beginning with Equation 1.7 from Liu’s thesis:

∇Pi − nimi
~G = −nimi

∑
t6=i

νit( ~Ci − ~Ct) (A.1)

Simplify nimi to ρi:

∇Pi − ρi ~G = −ρi
∑
t6=i

νit( ~Ci − ~Ct) (A.2)

Divide through by −ρi:

− 1

ρi

(
∇Pi − ρi ~G

)
=
∑
t6=i

νit( ~Ci − ~Ct) (A.3)

Separate the summation term on the right hand side:

− 1

ρi

(
∇Pi − ρi ~G

)
=
∑
t6=i

νit ~Ci −
∑
t6=i

νit ~Ct (A.4)

Add
∑

t6=i νit
~Ct to both sides:

− 1

ρi

(
∇Pi − ρi ~G

)
+
∑
t6=i

νit ~Ct =
∑
t6=i

νit ~Ci (A.5)

Bring the
∑

t6=i νit
~Ct term into the parentheses on the left hand side:

− 1

ρi

(
∇Pi − ρi ~G− ρi

∑
t6=i

νit ~Ct
)

=
∑
t6=i

νit ~Ci (A.6)
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Divide through by
∑

t6=i νit:

~Ci = − 1

ρi
∑

t6=i νit

(
∇Pi − ρi ~G− ρi

∑
t6=i

νit ~Ct
)

(A.7)

Express diffusive flux by multiplying both sides by ρi:

~ΓDi = ρi ~Ci = − 1∑
t6=i νit

(
∇Pi − ρi ~G− ρi

∑
t6=i

νit ~Ct
)

(A.8)

Equation A.8 differs from equation 1.8 in Liu’s thesis which is shown below by a sign change on

the ρi
∑

t6=i νit
~Ct term:

~ΓDi = ρi ~Ci = − 1∑
t6=i νit

(
∇Pi − ρi ~G+ ρi

∑
t6=i

νit ~Ct
)

(A.9)

A.2 Error Analysis

Finding ”Scale Height”, or λ, from data by fitting an exponential curve to the data introduces

some error for data that does not follow an exponential profile. In this derivation, λ refers to the

actual scale height, while λ∗ is the derived approximation for the exact value. Let the data points,

x1, x2, and x3 have corresponding y values of y1, y2, and y3 respectively. Assume an exponential

profile around (x2, y2) constructed such that f(x) = y2e
x−x2
λ and f(x2) = y2 and f ′(x2) = y′2.

The other values, y1 and y2 follow the exponential but with an adjustment factor. So, y1 =

f(x1)η, y3 = f(x3)δ for 0 ≤ η, δ ≤ ∞. Then consider:

ln(y1) = ln(f(x1)η) = ln(f(x1)) + ln(η) = ln(y2e
x1−x2
λ ) + ln(η) = ln(y2) +

x1 − x2
λ

+ ln(η)

ln(y3) = ln(f(x3)δ) = ln(f(x3)) + ln(δ) = ln(y2e
x3−x2
λ ) + ln(δ) = ln(y2) +

x3 − x2
λ

+ ln(δ)

Calculating λ∗ by assuming an exponential profile for y can then summarized by Equation A.10.

1

λ∗
=
ln(y3)− ln(y1)

x3 − x1
(A.10)

Then:

1

λ∗
=
ln(y2) + x3−x2

λ + ln(δ)− ln(y2)− x1−x2
λ − ln(η)

x3 − x1
=

x3−x1
λ + ln(δ)− ln(η)

x3 − x1
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Simplifying:

1

λ∗
=

1

λ
+

ln( δη )

x3 − x1
(A.11)

Solving for λ∗ we get the following:

λ∗ =
λ(x3 − x1)

(x3 − x1) + λln( δη )
(A.12)

Thus the error term, (λln( δη )), is in the denominator. If δ and η are both equal to 1, then

the error term is zero and equation A.12 simplifies to just λ∗ = λ. If they are both close to 1 then

the error is extremely small. The following plots for Helium show that the values of f(x1), f(x3)

and y1, y3 are respectively very close and therefore the error can be neglected. Note, all plots are

made using Hsu’s TIEGCM run HSUVW.tiegcm2.0_dres.pdrag_f107_180_001.nc at latitude of

61.25 deg and longitude of 97.5 deg.
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(a) (b)

(c)

Figure A.1: Error associated with using the exponential assumption.

As altitude increases the density more closely follows an exponential profile and therefore the

approximation and data curves match very well. At an altitude of 125km the approximation and

data curves diverge, but in amounts that render the error in λ negligible. At higher altitudes, η

and δ become increasingly close to 1, dominating the error term in the denominator of equation

A.12 even though λ increases. As a check, the error term in the denominator amounts to a value

on the order of 10−5km at the 125km altitude. This is a negligible addition when |x1 − x3| at this
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altitude is roughly 8km. From these results, using an exponential curve fit to the data is accurate

for these purposes.

This works well because a previous three-point differentiation scheme was originally used,

however it was found that there was a consistent bias made to the scale height plots. The exponential

method shown here produced better results that were tested against the total density profile.

TIEGCM imposes hydrostatic equilibrium on the total gas, therefore the calculated scale height

should match the equilibrium scale height. The results are shown in Figure A.2.

Figure A.2: Comparison of the exponential method and three point differentiation method against

hydrostatic equilibrium.

A.3 Equations 5.7

The equations presented in 5.7 are derived here:



www.manaraa.com

42

1)

∂

∂z

(
1

H∗ρi

)
=

∂

∂z

(
− 1

ρi

∂ρi
∂z

)
= − 1

ρi

∂2ρi
∂z2

− ∂ρi
∂z

(
− 1

ρ2i

∂ρi
∂z

)
=

1

H∗ρi
2 −

1

ρi

∂2ρi
∂z2

(A.13)

2)
∂

∂z

(
1

HT

)
=

∂

∂z

(
1

T

∂T

∂z

)
=

1

T

∂2T

∂z2
+
∂T

∂z

∂

∂z

(
1

T

)
∂

∂z

(
1

HT

)
=

1

T

∂2T

∂z2
− 1

T 2

(
∂T

∂z

)2

=
1

T

∂2T

∂z2
− 1

H2
T

(A.14)

3)

∂

∂z

(
1

Hρi

)
=

∂

∂z

(
1

HPi
+

1

HT

)
=

∂

∂z

(
mig

kT
+

1

HT

)
=
mig

k

∂

∂z

(
1

T

)
+

∂

∂z

(
1

T

∂T

∂z

)
= −mig

k

1

T 2

∂T

∂z
+

(
1

T

∂2T

∂z2
− 1

HT
2

)
∂

∂z

(
1

Hρi

)
= −mig

kT

1

HT
− 1

HT
2 +

1

T

∂2T

∂z2

(A.15)

4)
∂

∂z

(
1

Hρ

)
=

∂

∂z

(
1

HP
+

1

Hm
+

1

HT

)
=

∂

∂z

(
mg

kT
+

1

Hm
+

1

HT

)
=
g

k

∂

∂z

(
m

T

)
− 1

H2
m

− 1

H2
T

+
1

T

∂2T

∂z2
+

1

m

∂2m

∂z2

=
g

kT

∂m

∂z
− mg

kT

1

T

∂T

∂z
− 1

H2
m

− 1

H2
T

+
1

T

∂2T

∂z2
+

1

m

∂2m

∂z2

=
mg

kT

1

Hm
− mg

kT

1

HT
− 1

H2
m

− 1

H2
T

+
1

T

∂2T

∂z2
+

1

m

∂2m

∂z2

∂

∂z

(
1

Hρ

)
=
mg

kT

(
1

Hm
− 1

HT

)
− 1

H2
m

− 1

H2
T

+
1

T

∂2T

∂z2
+

1

m

∂2m

∂z2

(A.16)

A.4 Equation 5.12

Starting with Equation 5.11 below, Equation 5.12 will be derived.

Equation 5.11:

ρiw
( 1

Hρ
− 1

H∗ρi

)
=

∂

∂z

[
ρiDi

( 1

Hρi
− 1

H∗ρi

)
+ ρiDT i

1

HT

]
(A.17)
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Pull the diffusion coefficients outside of the derivative, and distribute the derivative using the

product rule:

ρiw
( 1

Hρ
− 1

H∗ρi

)
= Di

[
ρi
∂

∂z

( 1

Hρi
− 1

H∗ρi

)
+
∂ρi
∂z

( 1

Hρi
− 1

H∗ρi

)]
+DT i

∂

∂z

(
ρi

1

HT

)
= Di

[
ρi
∂

∂z

( 1

Hρi
− 1

H∗ρi

)
+
∂ρi
∂z

( 1

Hρi
− 1

H∗ρi

)]
+DT i

(
− ρi

1

H2
T

+
1

HT

∂ρi
∂z

) (A.18)

Now divide through by ρi:

w
( 1

Hρ
− 1

H∗ρi

)
= Di

[
∂

∂z

( 1

Hρi
− 1

H∗ρi

)
+

1

ρi

∂ρi
∂z

( 1

Hρi
− 1

H∗ρi

)]
+DT i

(
− 1

H2
T

+
1

HT

1

ρi

∂ρi
∂z

)
= Di

[
∂

∂z

( 1

Hρi
− 1

H∗ρi

)
− 1

H∗ρi

( 1

Hρi
− 1

H∗ρi

)]
+DT i

(
− 1

H2
T

− 1

HT

1

H∗ρi

)
= Di

(
− mig

kT

1

HT
− 1

HT
2 −

1

H∗ρi
2 +

1

H∗ρi
2 −

1

H∗ρi

1

Hρi

)
+DT i

(
− 1

H2
T

− 1

HT

1

H∗ρi

)
= Di

[
− 1

HT

(mig

kT
+

1

HT

)
− 1

H∗ρi

1

Hρi

]
+DT i

(
− 1

H2
T

− 1

HT

1

H∗ρi

)
= Di

[
− 1

HT

1

Hρi
− 1

H∗ρi

1

Hρi

]
+DT i

(
− 1

H2
T

− 1

HT

1

H∗ρi

)
w
( 1

Hρ
− 1

H∗ρi

)
= − Di

Hρi

(
1

HT
+

1

H∗ρi

)
− DT i

HT

(
1

HT
+

1

H∗ρi

)

(A.19)

Finally, isolating w to one side produces Equation 5.12 shown below:

w = −
(
Di

Hρi
+
DT i

HT

)(
1

HT
+

1

H∗ρi

)(
1

Hρ
− 1

H∗ρi

)−1
(A.20)
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